pytorch Cookbook
🔥 一些 pytorch 编程的小技巧、trick 和 示例代码
本文代码基于PyTorch 1.0版本,需要用到以下包
import collections
import os
import shutil
import tqdm
import numpy as np
import PIL.Image
import torch
import torchvision
1. 基础配置
(1) check pytorch version
torch.__version__ # PyTorch version
torch.version.cuda # Corresponding CUDA version
torch.backends.cudnn.version() # Corresponding cuDNN version
torch.cuda.get_device_name(0) # GPU type
(2) update pytorch
conda update pytorch torchvision -c pytorch
(3) random seed setting
torch.manual_seed(0) # CPU
torch.cuda.manual_seed_all(0) # GPU
(4) 指定程序运行在特定显卡上:
在命令行指定环境变量
CUDA_VISIBLE_DEVICES=0,1 python train.py
在代码中指定
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
(5) 判断是否有CUDA支持
torch.cuda.is_available()
torch.set_default_tensor_type('torch.cuda.FloatTensor')
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
(6) 设置为cuDNN benchmark模式
Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。
toch.backends.cudnn.benchmark = True
如果想要避免这种结果波动,设置
torch.backends.cudnn.deterministic = True
(7) 手动清除GPU存储
有时Control-C中止运行后GPU存储没有及时释放,需要手动清空。在PyTorch内部可以
torch.cuda.empty_cache()
或在命令行可以先使用ps找到程序的PID,再使用kill结束该进程
ps aux | grep python kill -9 [pid]
或者直接重置没有被清空的GPU
nvidia-smi --gpu-reset -i [gpu_id]
2. 模型
(1) 提取ImageNet预训练模型某层的卷积特征
# VGG-16 relu5-3 feature.
model = torchvision.models.vgg16(pretrained=True).features
# VGG-16 pool5 feature.
model = torchvision.models.vgg16(pretrained=True)
model = torch.nn.Sequential(model.features, model.avgpool)
# VGG-16 fc7 feature.
model = torchvision.models.vgg16(pretrained=True)
model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3])
# ResNet GAP feature.
model = torchvision.models.resnet18(pretrained=True)
model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
with torch.no_grad():
model.eval()
conv_representation = model(image)
(2) 提取ImageNet预训练模型多层的卷积特征
class FeatureExtractor(torch.nn.Module):
"""Helper class to extract several convolution features from the given
pre-trained model.
Attributes:
_model, torch.nn.Module.
_layers_to_extract, list<str> or set<str>
Example:
>>> model = torchvision.models.resnet152(pretrained=True)
>>> model = torch.nn.Sequential(collections.OrderedDict(
list(model.named_children())[:-1]))
>>> conv_representation = FeatureExtractor(
pretrained_model=model,
layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image)
"""
def __init__(self, pretrained_model, layers_to_extract):
torch.nn.Module.__init__(self)
self._model = pretrained_model
self._model.eval()
self._layers_to_extract = set(layers_to_extract)
def forward(self, x):
with torch.no_grad():
conv_representation = []
for name, layer in self._model.named_children():
x = layer(x)
if name in self._layers_to_extract:
conv_representation.append(x)
return conv_representation
(3) 部分层使用预训练模型
注意如果保存的模型是torch.nn.DataParallel
,则当前的模型也需要是torch.nn.DataParallel
。torch.nn.DataParallel(model).module == model
。
model.load_state_dict(torch.load('model,pth'), strict=False)
将在GPU保存的模型加载到CPU:
model.load_state_dict(torch.load('model,pth', map_location='cpu'))
(4)fine-tune 微调全连接层
(4) 微调全连接层
model = torchvision.models.resnet18(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Linear(512, 100) # Replace the last fc layer
optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)
以较大学习率微调全连接层,较小学习率微调卷积层
model = torchvision.models.resnet18(pretrained=True)
finetuned_parameters = list(map(id, model.fc.parameters()))
conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters)
parameters = [{'parameters': conv_parameters, 'lr': 1e-3},
{'parameters': model.fc.parameters()}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
(5)保存与加载断点
注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。
# Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(best_acc, current_acc)
checkpoint = {
'best_acc': best_acc,
'epoch': t + 1,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.pth.tar')
torch.save(checkpoint, model_path)
if is_best:
shutil.copy('checkpoint.pth.tar', model_path)
# Load checkpoint.
if resume:
model_path = os.path.join('model', 'checkpoint.pth.tar')
assert os.path.isfile(model_path)
checkpoint = torch.load(model_path)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('Load checkpoint at epoch %d.' % start_epoch)
(6) 计算模型参数量[D]
# Total parameters
num_params = sum(p.numel() for p in model.parameters())
# Trainable parameters
num_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
(7) 模型权值初始化[D]
注意model.modules()
和model.children()
的区别:model.modules()
会迭代地遍历模型的所有子层,而model.children()
只会遍历模型下的一层。
# Common practise for initialization.
for m in model.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight, mode='fan_out',
nonlinearity='relu')
if m.bias is not None:
torch.nn.init.constant_(m.bias, val=0.0)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.constant_(m.weight, 1.0)
torch.nn.init.constant_(m.bias, 0.0)
elif isinstance(m, torch.nn.Linear):
torch.nn.init.xavier_normal_(m.weight)
if m.bias is not None:
torch.nn.init.constant_(m.bias, 0.0)
# Initialization with given tensor.
m.weight = torch.nn.Parameter(tensor)
(8) 冻结参数
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
3. 数据
(1) 常见训练和验证数据预处理
ToTensor操作会将PIL.Image或形状为H×W×D,数值范围为[0, 255]的np.ndarray转换为形状为D×H×W,数值范围为[0.0, 1.0]的torch.Tensor。
train_transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=224,
scale=(0.08, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
val_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(224),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
4. 训练
(1) 将整数标记转换成独热(one-hot)编码
(PyTorch中的标记默认从0开始)
N = tensor.size(0)
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
(2) 计算两组数据之间的两两欧式距离
# X1 is of shape m*d.
X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d)
# X2 is of shape n*d.
X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d)
# dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2)
dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))
(3) 双线性汇合(bilinear pooling)
X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*W
X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear pooling
assert X.size() == (N, D, D)
X = torch.reshape(X, (N, D * D))
X = torch.sign(X) * torch.sqrt(torch.abs(X) + 1e-5) # Signed-sqrt normalization
X = torch.nn.functional.normalize(X) # L2 normalization
(4) L1 正则化
l1_regularization = torch.nn.L1Loss(reduction='sum')
loss = ... # Standard cross-entropy loss
for param in model.parameters():
loss += torch.sum(torch.abs(param))
loss.backward()
reg = 1e-6
l2_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
if 'bias' not in name:
l2_loss = l2_loss + (0.5 * reg * torch.sum(torch.pow(W, 2)))
(5) 不对偏置项进行L2正则化/权值衰减(weight decay)
bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias')
others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias')
parameters = [{'parameters': bias_list, 'weight_decay': 0},
{'parameters': others_list}]
optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)
(6) 梯度裁剪(gradient clipping)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)
(7) 计算Softmax 输出的正确率
score = model(images)
prediction = torch.argmax(score, dim=1)
num_correct = torch.sum(prediction == labels).item()
accuruacy = num_correct / labels.size(0)
(8) 获取当前学习率
# If there is one global learning rate (which is the common case).
lr = next(iter(optimizer.param_groups))['lr']
# If there are multiple learning rates for different layers.
all_lr = []
for param_group in optimizer.param_groups:
all_lr.append(param_group['lr'])
5. Trick
(1) label smothing
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
N = labels.size(0)
# C is the number of classes.
smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
score = model(images)
log_prob = torch.nn.functional.log_softmax(score, dim=1)
loss = -torch.sum(log_prob * smoothed_labels) / N
optimizer.zero_grad()
loss.backward()
optimizer.step()
(2) Mixup
beta_distribution = torch.distributions.beta.Beta(alpha, alpha)
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
# Mixup images.
lambda_ = beta_distribution.sample([]).item()
index = torch.randperm(images.size(0)).cuda()
mixed_images = lambda_ * images + (1 - lambda_) * images[index, :]
# Mixup loss.
scores = model(mixed_images)
loss = (lambda_ * loss_function(scores, labels)
+ (1 - lambda_) * loss_function(scores, labels[index]))
optimizer.zero_grad()
loss.backward()
optimizer.step()
(3) 多卡同步BN(Batch normalization)
当使用torch.nn.DataParallel将代码运行在多张GPU卡上时,PyTorch的BN层默认操作是各卡上数据独立地计算均值和标准差,同步BN使用所有卡上的数据一起计算BN层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。
参见: Synchronized-BatchNorm-PyTorchgithub
Reference:
- Tensorflow cookbook
- Pytorch cookbook
- Pytorch-goodies
- Pytorch book
- Pytorch 官方文档 和 Tutorial
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!